Technology and design of inductive HTS shielded fault current limiter: German demonstration project.

A. Henning¹, H.-U. Klein¹, A. Usoskin¹, K. Bäuml², T. Janetschek³
¹ Bruker EST; ² Schneider Electric Sachsenwerk GmbH, ³ Stadtwerke Augsburg GmbH
Content

• Why a (superconducting) fault current limiter?

• Project overview

• Electro-Magnetic Design

• Cryogenic technology

• Summary
Why a (superconducting) fault current limiter?

inductive Shielded core Fault Current Limiter

→ iSFCL
The Power Grid Today

Centralised Production

Transmission

Distribution

Residential Areas

Industry

Buildings

Data Center
The Power Grid in the future

- Centralised Production
- Transmission
- Distribution
- E-Mobility and Energy Storage
- Residential Areas
- Industrial Customer
- Buildings
- Data Center
- Renewable Energies
- Decentral Production
Aftermath of a Severe Fault
if the safety systems fail
Solution

- Rebuilding of the local power grid
 - Replacement of transformers, switchgear, cables, ...

- Intelligent Limitation of Fault Currents
 - Use of Fault Current Limiting (FCL) Systems
Project Overview

inductive Shielded core Fault Current Limiter

$\rightarrow iSFCL$
Schneider Electric

Overview
• Turnover: €19.6 Milliarden in 2010
• More than 110,000 employees in more than 100 countries

Activity
• Devices for energy distribution in medium and low voltage range
• Industrial automation
• Building automation & security
• Energy management
• Uninterruptable power supplies und cooling systems
• Services
Facts

The utility „Stadtwerke Augsburg“ is the third-largest municipal energy supplier in Bavaria / Germany. It supplies energy, natural gas, drinking water and communal heating as well as easy public transport to its customer.

Energy
Natural gas
Community heating
Drinking water

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>997.9 Mio. kWh</td>
</tr>
<tr>
<td>Natural gas</td>
<td>3.846.9 Mio. kWh</td>
</tr>
<tr>
<td>Community heating</td>
<td>463.6 Mio. kWh</td>
</tr>
<tr>
<td>Drinking water</td>
<td>16.8 Mio m³</td>
</tr>
</tbody>
</table>

Power grid data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak load power grid</td>
<td>300 MW</td>
</tr>
<tr>
<td>Length of transmission lines</td>
<td>2400 km</td>
</tr>
</tbody>
</table>
Bruker Corporation
Global Company with Diversified Markets
Bruker Energy and Supercon Technologies (BEST)

- **Bruker EAS & Bruker HTS**
 Low and High Temperature Superconductors (LTS, HTS)

- **Bruker ASC**
 Superconducting Magnets and Devices for Research, Energy / Power, and Industry, Beamlines, Synchrotron Instrumentation / XUV

- **RI Research Instruments**
 (51% Bruker) cavities, RF systems, linacs, special projects

- **Hydrostatic Extrusions**
Before Fault:

- Iron core is inductively shielded by the HTS against the primary coil ⇒ "invisible" in the grid.
- Primary coil smaller than a comparable shunt reactor ⇒ small impedance.

After Fault:

- HTS gets normal conducting ⇒ iron core and screened part of the primary coil becomes "visible" ⇒ large impedance in the grid, which results in current limitation.
Joint project „iSFCL“
Partners and Project

Partner:
Bruker
EST

Function:
Limitation of the fault current in the grid of the utility Stadtwerke Augsburg between a transformer station and the factory of MTU onsite Energy GmbH.

MTU Onsite Energy is a producer of block heat and power plants. They are tested extensively, therefore MTU is a consumer as well as a supplier of electrical energy.

Intended location of the iSFCL (green), of the substation (blue) and of MTU onsite (yellow).
Grid Layout

Customer site:
MTU onsite Energy
U_N=10.6 kV
I_N= 1250 A
I_p=25.1 kA
I_k''=10.25 kA
I_op=817 A
S_f=15 MVA
I_E[1300 A / 200 ms

Transformer:
40 MVA
10/110 kV

Circuit breaker:
I_N=2500 A
release time 1s

10 kV-cable
2x400 mm² Cu
N2XS(F)2Y
R=0.0064 mΩ
X=0.0113 mΩ

Grid connection:
U_N=10.6 kV
S_K''= 380 MVA
I_k''=20.7 kA
R=0.021 Ω
X=0.366 Ω
R/X=0.059
κ=1.84

Circuit breaker I_N=1250 A; release time 0.5 s
Maximum Voltage Drop and Impedance in non-fault Operation

According to IEC 60038 10% voltage drop allowed based on the nominal voltage of 10.6 kV ⇒

\[Z = \frac{U_{\text{diff}}}{I_{N}} = \frac{1100 \, \text{V}}{817 \, \text{A}} = 1.34 \, \Omega \]

\[iSFCL \Rightarrow Z_{\text{nom}} < 1 \, \Omega \]

\[iSFCL \text{ estimated total active losses incl. cooling } \Rightarrow 45 - 50 \, \text{kW} \]

15 MVA Reactor for comparison with the iSFCL

Rated inductance at fault 8.6 mH per phase

Impedance (per phase) = 2.7 \(\Omega \) ⇒ Results in \(\approx 20\% \) voltage drop

Total active losses = 95 kW
Specifications

- **Operating voltage**: 10 kV
- **Power rating**: 15 MVA
- **Operating current (rms)**: 817 A
- **Fault current**
 - Limited maximum aperiodic short-circuit current (1st peak): <5 kA
 - Limited steady state fault current: 2 kA
 - Maximum aperiodic short-circuit current (1st peak): 25.1 kA
 - Initial symmetrical short circuit current $I_k^{"}$: 10.25 kA
- **Tripping time**: ~1 ms
- **Fault duration**: max. 500 ms

Current in kA / Voltage in kV

<table>
<thead>
<tr>
<th>Time in s</th>
<th>Grid Voltage</th>
<th>Current without iSFCL</th>
<th>Maximum aperiodic short-circuit current (25 kA)</th>
<th>Operational current (817 A rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>$2\sqrt{2}I_k^{"}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational current (817 A)

- Tripping time: ~1 ms
- Fault duration: max. 500 ms
Advantages of the iSFCL

- Reduction of the voltage drop during normal (non-fault) operation compared to an equivalent air core reactor.

- Reduction of active (ohmic) losses in comparison with other inductive solutions.

- Self-triggering compared to other conventional FCL (e.g. Is-Limiter) ⇒ No active trigger / control unit needed.

- Fail safe compared to resistive type FCL. ⇒ No interruption of the main current path during failure of the HTS or cooling system.

- Short reaction time and autonomous recooling after fault / quench.

- Only small lengths of HTS tape necessary compared to other superconducting types of FCL.
Electromagnetic Design

inductive Shielded core Fault Current Limiter

$\Rightarrow iSFCL$
Schematic Design iSFCL

- Primary coil
- 12 HTS modules stacked vertically (8 HTS tapes with shunts)
- GFRP cryostat
- Iron core
- Safety valves for blow-off during quench
- Support structure
General Design HTS-Shunt Combination

- HTS tapes with protection layer
- Rod for mech. connection of modules
- External shunts
- Supporting basis

Schematic, not drawn to scale
Limitation Behavior

Limited current 1st peak < 5 kA

Limitation Steady state < 2kA

Current in kA vs. Time in s

Limited current
Unlimited fault current

Limited current 1st peak < 5 kA
Limitation Steady state < 2kA
Current Distribution in Coaxial Arranged HTS Rings

[Diagrams showing current distribution and flux density over time]
Current Distribution in Coaxial Systems of HTS Rings stacked along z-axis
Current Distribution in Coaxial Systems of HTS Rings stacked along z-axis
Current Distribution in Coaxial Systems of HTS Rings stacked along z-axis
Cryosystem

inductive Shielded core Fault Current Limiter

$\rightarrow iSFCL$
Cooling – General Design

Blow off during quench

Recooling in normal operation

Only one reservoir tank per system, Coolers are integrated in the tank.

Coldheads

Refilling of volume losses via N₂ tanks. (Gas will be liquefied by cooling system)

Design: ILK Dresden
Summary

• The grid layout and the specifications are typical for MV grids
 → system should be easily adaptable for other locations / grids

• Novel HTS rings structure used which consists of several independent HTS rings
 → easy to adapt to grid power level via change of # of HTS rings

• Current distribution / sharing between HTS rings is studied

• Cryosystem designed for easy use
 → no handling of LN₂ necessary by customer
Project Team

Bruker ASC GmbH

Bruker HTS GmbH
A. Usoskin, T. Withnell, A. Rutt

Schneider Electric Sachsenwerk GmbH
K. Bäuml, R. Summer, P. Novak, U. Kaltenborn

Stadtwerke Augsburg
T. Janetschek