

Micro Tube Heat Exchangers for Power Plant Condensers

Kevin Kelly, President Mezzo Technologies Baton Rouge, LA

Transford Station Low Process

Background: Logic for talk

- 1. I've never designed a condenser for a power plant, and I am not currently doing business in this field.
- 2. I didn't have time to really evaluate what alternatives are currently being examined.
- 3. Mezzo Technologies makes micro tube heat exchangers. The heat transfer/air pressure drop ratio of these heat exchangers is higher than the competition that Mezzo has been able to identify (aluminum plate-fin for example). This attribute seems important for air-based condensers.
- 4. For two-phase-water, micro tube heat exchangers also seem to give very good performance.
- 5. The problem definition for a condenser that dumps heat to the ambient air seems reasonably simple to this non-expert in the field:
 - Provide sufficient heat transfer
 - Minimize fan power required to pull air through the heat exchanger.
 - Minimize Initial cost, footprint, and maintenance costs.
- 6. The problem definition for a condenser that uses water is less well understood. The following assumptions were used to define a "high performance" steam condenser for low water availability applications:
 - Minimize water flow rate (maximize exit temperature of water).
 - Minimize cost of condenser.
 - Provide design that is robust and easily maintained.

Snapshot of Mezzo

- Manufacture high performance micro tube heat exchangers (radiators, condensers, evaporators, oil coolers, recuperators etc.)
- Revenue: 70% SBIR, 30% Commercial
- 12 employees
- Located at the Bon Carre Business Park, Florida Boulevard, Baton Rouge

Micro Tube Heat Exchangers

Mezzo micro tube heat exchangers:

- Proprietary tube bank correlations with high performance.
- Cost effective methods to assemble and join (via epoxies or braze) tens of thousands of tubes to headers.
 - Patent protection on methods to make micro tube heat exchangers.

Micro Tube Heat Exchangers

Indy radiator:

- Most teams used Mezzo radiators in 2010 and 2011.
- In back-to-back tests, using Mezzo rad reduced engine temperature 6-8 C.
- Mezzo UA/air pressure drop about 30-40% higher than high performance aluminum platefin.
- Very robust: Some teams used single radiator the entire season.

Micro Tube Heat Exchangers

Thermal Performance

Indy radiator:

- Comparison of heat transfer shows significant improvement.
- Air side pressure drops (in this test) were the same.
- UA increase associated with Mezzo: 30-50%

Economizer:

- Navy SBIR program.
- Proof pressure: 1000 psi.
- Incorporates advantages of shell-and-tube design.
- About 1/3 volume, 1/3 weight of brazed plate alternative.
- Potential to produce for lower cost!

Condenser/evaporator for Bradley Fighting Vehicle: Army SBIR program. • Proof pressure: 1000 psi. Incorporates advantages of shell-and-tube design. More heat transfer/lower air ٠ side pressure drop. **Evaporator** Condenser

Oil and gas application:

- High heat transfer with low air side pressure drop.
- Thousands of 3 foot x 3 foot modules required.
- Economic advantage over existing plant design.

High Pressure shell-and-tube with microtubes: Refrigerant through tubes, water on the shell side

Air-based Condenser Specifications

ESKOM's Matimba (6 units: 680 MW each)

Dry air-based condenser

- Heat transfer: 780 MW
- Steam condensing temp: 150 F
- Ambient air temp: 80 F
- Air flow rate: 24,000 kg/sec
- Air volume flow rate: 1.24 x 10⁶ m³/min

Solution #1 (80 F day)

- 699 modules each 15 feet x 5 feet x 4.85 inches deep (39 x 10⁶ tubes)
- Air exit temp: 138 F (83% effectiveness)
- Air pressure drop: 1.13 mbar
- Air power requirement (fan efficiency= 90%): 2.6 MW (about 1% of plant power).
- Tube cost: \$7M
- Tube mass: 280 tons
- Tubes: SS with OD = .050 inches, ID = .038 inches

Dry air-based condenser: hot day (100 F)

- Heat transfer: 780 MW
- Steam condensing temp: 150 F
- Ambient air temp: 100 F
- Air flow rate: 36,000 kg/sec
- Air volume flow rate: 1.92 x 10⁶ m³/min

Solution

- 699 modules each 15 feet x 5 feet x 4.5 inches deep.
- Air exit temp: 138 F (83% effectiveness)
- Air pressure drop: 2.41 mbar
- Air power requirement (fan efficiency= 90%): 7.7 MW (about 3.1% of plant power).
- Tube cost: \$6.3M
- Tube mass: 280 tons
- Tubes: SS with OD = .050 inches, ID = .038 inches

Schematic of Plant

FLUID CONDITIONS

	FLUID 1		FLUID 2		
	(Tube side)		(Shell side)		
Quantity	Value	Unit	Value	Unit	
Flow Rate	60000.00	kg/s	36000.00	kg/s	
Inlet Temperature	150.00	٩F	100.00	٩F	
Inlet Pressure (absolute)	30.00	psi	14.70	psi	
Allowable Pressure Drop	0.00	psi	0.00	mbar	
Fluid Name	Water (In	ncropera)	Air (Incropera)		
	Va	Value Unit		nit	
Heat Load	781000.0		kW		
Heat Load Desired Value Should Be Iterated to Match Heat Load Actual					
Value in The Output Table					

HEAT EXCHANGER GEOMETRY

Width		10500.00	ft
Length (flow length of Fluid 2)		4.85	in
Height (exposed tube length)		5.00	ft
Tube Bank Arrangement		In-Line	
Tube Wall Thickness		6	thou
Tube Outer Diameter		50	thou
Relative Longitudinal Spacing (SL/Do)	1		
Relative Transverse Spacing (S _T /D _o)			
Tripped tube flow (Yes/No)		Yes	
Number of Sub-Laminates (stacked al	ong the height)	1	
Multipass Configuration Fi	low	Shell side	
N	umber of Passes	1	
Extra Tube Length for Joining (total)		0.5	in
Fluid Port Inner Diameter (enter size &	units or ZERO		
if intake is face area)			
T	ube Side	0	in
S	hell Side	0	in

		FLUID '	1	FLUID (2
Fluid Name		Water (Incrop Cmax	era)	Air (Incrope Cmin	ra)
Mass Flow Ra	te	3600000.000	kg/min	2160000.000	kg/min
Inlet Volumetri	c Flow Rate	3672.798	m3/min	1919415.657	m3/min
Standard Volu	metric Flow Rate	N/A	N/A	63578022.833	SCFM
Temperature	Inlet	150.00	۰F	100.00	۰F
	Average	147.20	۰F	119.37	۰F
	Exit	144.40	۰F	138.75	۰F
Pressure Drop	Allowable	0.000	mbar	0.000	mbar
	Total	1403.279	mbar	2.416	mbar
	Channels only	1403.279	mbar	2.416	mbar
	Minor losses	0.000	mbar	0.000	mbar
Dynamic Pres	6 Inlet duct/pipe	0.118	mbar	0.242	mbar
Describer (9)		7.0	~	75.0	
Porosity (% op	ieri area)	1.J	%	10.9	%
Number of Cha	innels	39,267,469.9		607,228.9	
Hydraulic Dian	neter at Datia	0.965	mm	1.270	mm
Channel Aspec	ct Ratio			769.036	
Flow Type		Turbulent			
Heat Capacity		251211626.144	W/K	36283234.067	W/K
Velocity	inlet Manifold/Duct	0.16	m/s	6.56	m/s
	inside Channels	2.13	m/s	8.93	m/s
Re		4593.5		633.8	
f (or effective f)	0.04		0.086102	per ro
Nu		26.5		11.433008	
h convection		18042	W/K-m2	251	W/K-m
Thermal Condu	ictance	3273909193	MAK	59980709	MAK

Total Width		126000.00	in
Total Length	Fluid 2 flow direction	4.85	in
Face Area	Fluid 1	611100.00	in2
Face Area	Fluid 2	7560000.000	in2
Volume		21218.75	ft3
Mase	dry w/ extra tube length	562347.274	lb
wass	wet w/ extra tube length	657053.719	lb
∆T _{inlet} Fluids		50.00	°F
Cr		0.144	
Effectiveness	desired	77.49	%
	actual	76.77	%
NTU	required	1.66	
	provided	1.62	
UA	without safety factor	60105567.68	W/K
	required if single pass	60105567.68	W/K
	with safety factor	60105567.68	W/K
	provided	58733252.08	W/K
Heat Load	desired	781000.000	kW
Heat Load	actual	773773.170	kW
Tube bank A	rrangement	In-Line	
S _L /D			
S _T /D			
SL			mm
ST			mm
Number Tube	e Rows		
Number Tube Columns			
Number Tube	es Total		
Transverse Gap			mm
Longitudinal Gap			mm

17

Water-based condenser

- Heat transfer: 3,000,000 kW
- Steam condensing temp: 160
- Water temp: 95 F
- Water flow rate: 25,000 kg/sec
- Water exit temp: 146 F (effectiveness of 78%)
- Core size: W = 50 feet, Tube length = 5 feet, Tube bank depth = 5 feet
- Tube OD = .150 inches
- Tube Wall = .010 inches
- # Tubes = 603,000
- Tube cost= \$300k

Final thoughts

- Micro tube heat exchangers can offer, in certain arrangements, excellent ratios of heat transfer/air side pressure drop. This reality may be of use for ACC.
- Water cooled condensers might be more compact using "small" micro tubes.
- Whether these concepts have commercial potential to be determined.
- Some might be skeptical that heat exchangers with millions of small tubes can be dependable. I think that such heat exchangers can be fabricated, and they will be dependable.
- Thanks for inviting me.