EPRI 2008

<u>Cooling Systems</u>

Peter G. Demakos, P.E.

Niagara Blower Heat Transfer Solutions

Buffalo, NY

Agenda

- Closed-loop, evaporative cooling systems Wet Surface Air Coolers (WSAC)
- Technology comparison
- Applications
- Water and energy savings
- Summary/questions

What is a Wet Surface Air Cooler?

- Heat removal device
 - Cooling liquids
 - Condensing vapors

Wet Surface Air Cooler

- Where is it applicable?
 - Aux loop cooling
 - Direct vacuum steam condensing
 - Refrigerant condensing
 - Lowering discharge water temperature

- Where is it being used?
- Numerous simple and combined cycle power plants worldwide

How Does the WSAC Work?

3.) Spray Water Directly Over the Exposed Tubes

2.) Remove "Shell" Exposing Tubes

4.) Air is Induced Over Tubes in the Same Direction as the Water

4 Heat is **How Does the WSAC Work?** transferred 1 Air is from the induced cascading downward RECIRCULATING water to the over tube SPRAY INLET STREAM air stream via bundles OUT vaporization нот PROCESS STREAM 2 Water 5 Air stream flows forced to turn downward 180° providing along with maximum free the air water removal 5 **BASIN AND** PLENUM CHAMBER 6 Fans discharge air 3 Heat from the vertically at a high process stream is velocity preventing released to the recirculation cascading water

Cooling Technology Options

Cooling Tower / Heat Exchanger

Dry / Air Cooled

Wet Surface Air Cooler (WSAC)

Equipment Configuration

Factory Assembled

Field Erected

General Specifications

Serpentine Coils

or

Bolted Straight Through Bundles

General Specifications for WSAC

Spray Water
Distribution System

- Low-pressure / High-flow design
- Full flooded spray pattern
- No fill

Water Issues

EVAPORATION(GPM) = HEAT LOAD (Btu/hr)/570,000 MAKEUP = EVAPORATION + BLOWDOWN + DRIFT CYCLES OF CONCENTRATION = (EVAPORATION / BLOWDOWN) +1

<u>Reducing Water Makeup</u> <u>in Existing Open-Loop Systems</u>

SAVINGS: 525 MW plant \rightarrow 60 million gal/yr

Aux Loop Cooler

Schematic of Dry/Wet Cooler

Cooling to 80°F at 95°F DB / 70°F WB

Water Savings Using

Niagara Dry/WSAC

Comparison of Total Power Required

vs. Approach Temp

Pump less water

Lower horsepower

- Reduced installation costs
- More available power for sale
- Lower carbon footprint

Can use poor quality water -Reuse plant water -Brackish water, seawater -Agricultural runoff -FGD water

Can run higher cycles of concentration

- Less water to purchase
- Less water to dispose of

Cocurrent spray system design – Lower discharge height – Lower PM10

Can cool plant discharge water – Reduced thermal effect

Can evaporate blowdown

- Smaller evaporation ponds
- Less ZLD system capacity

Cost savings

"Expensive to own and operate"

Small Packaged Fluid Cooler

Large Gas Turbine Packaged Fluid Cooler

Combined Cycle Plant – Aux Loop Cooler

1100 GPM, 160°F Inlet Temp., 120°F Outlet Temp., 80°F Wet Bulb

Steam Condenser

Steam Condenser

670,000 lb/hr Steam Condensers and Auxiliary Fluid Cooler

12,000 Ton Ammonia Condenser

Griffith, AZ

Summary

- More efficient cooling/condensing
- Improved heat rate
- Less HP
- Lower carbon footprint
- Less maintenance
- Water savings

EPRI 2008

<u>Cooling Systems</u>

Peter G. Demakos, P.E.

Niagara Blower Heat Transfer Solutions

Buffalo, NY